Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118723, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490625

RESUMO

For better understanding the mechanism of microbial strains promoting methane production, four strains Hungatella xylanolytica A5, Bacillus licheniformis B1, Paraclostridium benzoelyticum C2 and Advenella faeciporci E1 were inoculated into anaerobic digestion systems. After bioaugmentation, the cumulative methane production of A5, B1, C2 and E1 groups elevated by 11.68%, 8.20%, 18.21% and 15.67% compared to CK group, respectively. The metagenomic analysis revealed that the species diversity and uniformity of the experimental groups was improved, and hydrolytic acidifying bacteria, represented by Clostridiaceae, Anaerolineaceae and Oscillospiraceae, and methanogens, such as Methanotrichaceae and Methanobacteriaceae, were enriched. Meanwhile, the abundance of key genes in carbohydrate, pyruvate and methane metabolism was increased in the inoculated groups, providing reasonable reasons for more methane production. The strengthening mechanism of microbial strains in this study offered a theoretical foundation for selecting a suitable bioaugmentation strategy to solve the problems of slow start-up and low methane production in anaerobic digestion.

2.
Transl Cancer Res ; 13(2): 975-988, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482445

RESUMO

Background: Due to the implementation of individualized treatment, the majority of gastric cancer patients have a favorable prognosis, but advanced gastric cancer with recurrence and distant metastasis still plagues some patients. As a member of the FK506-binding protein (FKBP65) family, there is growing evidence that FKBP10 plays a crucial role in tumorigenesis. However, the role of FKBP10 in the tumor microenvironment (TME) has been a prominent issue. Methods: The FKBP10 knockdown efficiency in gastric cancer cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Wound healing and transwell analysis were performed to detect variations in cell invasion and migration. We integrated single-cell and bulk sequencing data to further elaborate the impact of FKBP10 and FKBP10-coexpressed genes (FCGs) in the TME via a variety of bioinformatics approaches. Results: Here, we found that FKBP10 knockdown inhibited cell invasion and metastasis. FKBP10 was chiefly expressed in inflammatory cancer-associated fibroblasts (iCAFs), and FCGs principally mediated alterations in extracellular matrix (ECM) organization. Besides, according to nine prognosis-related FCGs, two disparate clusters were identified, and differences in tumor immune infiltration characteristics and immunotherapy response between different clusters were investigated. Conclusions: Our study provides insights into the expression and function of FKBP10 in the microenvironment of gastric cancer.

3.
Int J Biol Macromol ; 259(Pt 2): 129354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218303

RESUMO

To effectively convert the fermentable sugars present in lignocellulosic biomass into biofuels and additional value-added products, it is crucial to remove lignin from the biomass. With the intention of expeditiously remove lignin from poplar wood and improve cellulose saccharification, an innovative ternary deep eutectic solvent (DES) benzyl triethyl ammonium chloride-ethylene glycol-FeCl3 (T-EG-F) was studied for the pretreatment of poplar hydrolyzed residue (PHR). The results revealed that following T-EG-F DES pretreatment at 130 °C for 4 h, the lignin removal rate reached 91.88 %. The effect of DES on PHR and regenerated lignin was comprehensively investigated using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Thermogravimetric (TG) and other characterization methods, providing valuable insights into the mechanism of this innovative biomass pretreatment. Moreover, there was a significant improvement in the enzyme digestibility of the DES pretreatment residue. At 48 h, the enzyme load of 30 FPU/g cellulose achieved a remarkable enzyme digestibility of 97.31 %, and this value exhibited a notable increase of 6.56 times compared to the untreated poplar sample. In addition, the T-EG-F could be recycled and reused. This study demonstrates that the potential of T-EG-F DES pretreatment as a green and efficient method for lignin dissociation from lignocellulosic biomass, offering a promising approach for biomass component separation.


Assuntos
Lignina , Populus , Lignina/química , Solventes Eutéticos Profundos , Solventes/química , Hidrólise , Celulose/química , Biomassa
4.
J Agric Food Chem ; 72(2): 1178-1189, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38183288

RESUMO

3-Fucosyllactose (3-FL) is an important oligosaccharide and nutrient in breast milk that can be synthesized in microbial cells by α-1,3-fucosyltransferase (α-1,3-FucT) using guanosine 5'-diphosphate (GDP)-l-fucose and lactose as substrates. However, the catalytic efficiency of known α-1,3-FucTs from various sources was limited due to their low solubility. To enhance the microbial production of 3-FL, the efficiencies of α-1,3-FucTs were evaluated and in Bacillus subtilis (B. subtilis) chassis cells that had been endowed with a heterologous synthetic pathway for GDP-l-fucose, revealing that the activity of FucTa from Helicobacter pylori (H. pylori) was higher than that of any of other reported homologues. To further improve the catalytic performance of FucTa, a rational design approach was employed, involving intracellular evaluation of the mutational sites of M32 obtained through directed evolution, analysis of the ligand binding site diversity, and protein structure simulation. Among the obtained variants, the FucTa-Y218 K variant exhibited the highest 3-FL yield, reaching 7.55 g/L in the shake flask growth experiment, which was 3.48-fold higher than that achieved by the wild-type enzyme. Subsequent fermentation optimization in a 5 L bioreactor resulted in a remarkable 3-FL production of 36.98 g/L, highlighting the great prospects of the designed enzyme and the strains for industrial applications.


Assuntos
Bacillus subtilis , Fucosiltransferases , Trissacarídeos , Humanos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Trissacarídeos/metabolismo , Fucose/metabolismo , Escherichia coli/metabolismo , Oligossacarídeos/metabolismo
5.
Environ Res ; 245: 118031, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157970

RESUMO

Bioaugmentation technology for improving the performance of thermophilic anaerobic digestion (TAD) of food waste (FW) treatment is gaining more attention. In this study, four thermophilic strains (Ureibacillus suwonensis E11, Clostridium thermopalmarium HK1, Bacillus thermoamylovorans Y25 and Caldibacillus thermoamylovorans QK5) were inoculated in the TAD of FW system, and the biochemical methane potential (BMP) batch study was conducted to assess the potential of different bioaugmented strains to enhance methane production. The results showed that the cumulative methane production in groups inoculated with E11, HK1, Y25 and QK5 improved by 2.05%, 14.54%, 19.79% and 9.17%, respectively, compared with the control group with no inoculation. Moreover, microbial community composition analysis indicated that the relative abundance of the main hydrolytic bacteria and/or methanogenic archaea was increased after bioaugmentation, and the four strains successfully became representative bacterial biomarkers in each group. The four strains enhanced methane production by strengthening starch, sucrose, galactose, pyruvate and methane metabolism functions. Further, the correlation networks demonstrated that the representative bacterial genera had positive correlations with the differential metabolic functions in each bioaugmentation group. This study provides new insights into the TAD of FW with bioaugmented strains.


Assuntos
Bacillus , 60659 , Eliminação de Resíduos , Anaerobiose , Alimentos , Bactérias/metabolismo , Metano , Reatores Biológicos , Esgotos/microbiologia
6.
ACS Omega ; 8(42): 39570-39582, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901486

RESUMO

The objective of this study was to investigate the impact of thermophilic bacteria on crude fiber content, carbohydrate-active enzyme (CAZyme) genes, and associated microbial communities during Chinese medicine residues composting. The study examines changes over 15 days of composting with (T) and without (CK) thermophilic microbial agents. Results show that the group T compost temperature reached a maximum of 71.0 °C and remained above 70 °C for 2 days, while the group CK maximum temperature was only 60.9 °C. On Day 15, the seed germination index (GI) of group T reached 98.7%, while the group CK GI was only 56.7%. After composting, the degradation rates of cellulose, hemicellulose, and lignin in group T increased by 5.1, 22.5, and 18.5%, respectively, compared to those in group CK. Thermophilic microbial agents changed the microbial communities related to CAZymes, increasing unclassified_o_Myxococcales and Sphaerobacter abundance and reducing Acinetobacter and Sphingobacterium abundance. Thermophilic microbial agents also increased the abundance of the GT4, GT2_Glycos_transf_2, and AA3 gene families. These results show that thermophilic microbial agents can increase composting temperature, accelerate compost maturation, and promote crude fiber degradation. Therefore, they have broad application potential.

7.
Int J Biol Macromol ; 253(Pt 8): 127600, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871719

RESUMO

Due to the recalcitrant structure of woody biomass such as poplar, the efficient disassembly and separation of hemicellulose component from woody biomass is crucial for green biomass processing and full component utilization. This study presented an environmentally friendly approach to utilize acidic electrolyzed water (AEW) combined with metal salts and investigated its pretreatment effects on hemicellulose removal and cellulose and lignin retention under different conditions. Meanwhile, the structural properties and enzymatic hydrolysis performance of the pretreated residues were also characterized. As a result, under the optimized pretreatment conditions (0.03 mol/L FeCl3 with AEW at 180 °C for 10 min), hemicellulose removal from poplar wood reached 98.64 %, accompanied by xylose recovery rate of 98.46 %, cellulose retention rate of 93.43 % and lignin retention rate of 94.29 %. Enzymatic hydrolysis rate of the pretreated cellulose-enriched substrate reached 97.65 %. Furthermore, comprehensive structural characterizations revealed that FeCl3 coupled with AEW pretreatment resulted in surface damage to the poplar wood, effective removal of the amorphous hemicellulose component, and partial destruction of the cellulose crystallinity. In conclusion, FeCl3 coupled with AEW pretreatment effectively separates hemicellulose, leading to significant alterations in biomass composition and structure, ultimately resulting in improved enzymatic digestion. These results provide theoretical support for targeted dissociation of hemicellulose and full component utilization of woody biomass.


Assuntos
Celulose , Populus , Celulose/química , Lignina , Água/química , Biomassa , Populus/química , Hidrólise , Ácidos
8.
Chem Commun (Camb) ; 59(84): 12597-12600, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791461

RESUMO

The lipid-inspired biosilicification process enables the creation of a series of concave silica nanoarchitectures in the complex shapes of nanobowls, nanodishes, nanoboats, and nanoloops. The reaction at a pH of 8 initially allows the formation of thin and elastic circular gel nanosheets that can undergo inducible stretching and folding, which subsequently evolves into nanodish and nanobowl through a potential global buckling process. The adjustment of the pH to 9 and 4 enables the production of more complex morphogens of nanoboat and nanoloop, respectively. These unique silica nanoarchitectures may have a wide scope of potential application from nanoreactors in heterogenous catalysis to drug delivery systems and optical materials.

9.
Appl Microbiol Biotechnol ; 107(24): 7635-7646, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831185

RESUMO

Androst-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) are important drug intermediates that can be biosynthesized from phytosterols. However, the C9 hydroxylation of steroids via 3-ketosteroid 9α-hydroxylase (KSH) limits AD and 4-HBC accumulation. Five active KshAs, the oxidation component of KSH, were identified in Mycobacterium fortuitum ATCC 35855 for the first time. The deletion of kshAs indicated that the five KshA genes were jointly responsible for C9 hydroxylation during phytosterol biotransformation. MFKDΔkshA, the five KshAs deficient strain, blocked C9 hydroxylation and produced 5.37 g/L AD and 0.55 g/L 4-HBC. The dual function reductase Opccr knockout and 17ß-hydroxysteroid dehydrogenase Hsd4A enhancement reduced 4-HBC content from 8.75 to 1.72% and increased AD content from 84.13 to 91.34%, with 8.24 g/L AD being accumulated from 15 g/L phytosterol. In contrast, hsd4A and thioesterase fadA5 knockout resulted in the accumulation of 5.36 g/L 4-HBC from 10 g/L phytosterol. We constructed efficient AD (MFKDΔkshAΔopccr_hsd4A) and 4-HBC (MFKDΔkshAΔhsd4AΔfadA5) producers and provided insights for further metabolic engineering of the M. fortuitum ATCC 35855 strain for steroid productions. KEY POINTS: • Five active KshAs were first identified in M. fortuitum ATCC 35855. • Deactivation of all five KshAs blocks the steroid C9 hydroxylation reaction. • AD or 4-HBC production was improved by Hsd4A, FadA5, and Opccr modification.


Assuntos
Mycobacterium fortuitum , Mycobacterium , Fitosteróis , Mycobacterium fortuitum/metabolismo , Mycobacterium/genética , Oxigenases de Função Mista/metabolismo , Esteroides/metabolismo , Biotransformação
10.
Water Res ; 244: 120457, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574624

RESUMO

Food waste (FW) single-substrate anaerobic digestion usually suffers from rapid acidification and inhibition of oil and salt. To overcome these problems and improve the process efficiency, supplementing other substrates has been used in FW anaerobic digestion. This study investigated the biogas production potential through co-digestion of FW with kitchen waste (KW) or garden waste (GW) in different ratios under thermophilic conditions. The results showed that the optimal ratios were FW:KW=60:40 and FW:GW=80:20 which biogas production improved 73.33% and 68.45% compared with single FW digestion, respectively. The organic matter removal rate of co-digestion was 84.46% for FW+KW group (RFK) and 65.64% for FW+GW group (RFG). Co-digestion increased the abundance of the dominant hydrolytic bacteria Defluviitoga and Hydrogenispora and hydrogenotrophic methanogen Methanoculleus. Furthermore, glycoside hydrolases (GHs), vital carbohydrate-active enzymes (CAZymes), were improved by co-digestion. Co-digestion could also effectively promote the function of cellulase and hemicellulose. This strategy for utilizing different organic wastes together as co-substrate provides a new avenue for bioenergy production.


Assuntos
Eliminação de Resíduos , Eliminação de Resíduos/métodos , Alimentos , Jardins , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano , Digestão , Esgotos
11.
Clin Biochem ; 118: 110617, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37507082

RESUMO

OBJECTIVE: To evaluate the current situation of expanded noninvasive prenatal screening (NIPS) for copy number variations (CNVs) in laboratories in China, the National Center of Clinical Laboratories conducted an externalqualityassessment (EQA) program. METHODS: The EQA panel consisted of 12 artificial samples associated with different syndromes, which were mixed with maternal plasma collected from pregnant women and enzyme-digested cell-free DNA (cfDNA) from cell lines with different fetal fractions (FFs) ranging from 5% to 15%. The panel was validated by next-generation sequencing and distributed to laboratories, along with questionnaires and case scenarios. RESULTS: Sixty-nine laboratories participated in the EQA program, and 91.30% (63/69) of laboratories correctly identified all samples. A total of 7.25% (5/69) of the laboratories reported false-negative results, and 2.90% (2/69) of the laboratories reported unexpected CNVs. The correct rates of the 22q11.2 deletion syndrome, Cri-du-chat syndrome, 1p36 deletion syndrome and Angelman/Prader-Willi syndrome samples were 97.46%, 98.55%, 100%, and 100%, respectively. With the increase in the FF, deletion size, and read depth, the detection rate increased. For results reports, only five laboratories reported FF values, one laboratory reported the CNV classification type, and none reported sensitivity, specificity, positive predictive values, and negative predictive values. CONCLUSION: The detection capabilities of NIPS for CNVs still need to be improved and standardized, and FF, deletion size, and read depth are factors that affect the detection rate.


Assuntos
Transtornos Cromossômicos , Teste Pré-Natal não Invasivo , Feminino , Gravidez , Humanos , Variações do Número de Cópias de DNA/genética , Teste Pré-Natal não Invasivo/métodos , Laboratórios , Deleção Cromossômica , Diagnóstico Pré-Natal/métodos
12.
Appl Microbiol Biotechnol ; 107(11): 3419-3428, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093308

RESUMO

Acyl-CoA dehydrogenase (ChsE) is involved in the steroid side-chain degradation process. However, their function in vivo remains unclear. In this study, three ChsE, ChsE1-ChsE2, ChsE3, and ChsE4-ChsE5, were identified in Mycolicibacterium neoaurum, and their functions in vivo are studied and compared with those from Mycobacterium tuberculosis in vitro. By gene knockout, complementation, and the bioconversion of phytosterols, the function of ChsE was elucidated that ChsE4-ChsE5 could utilize C27, C24, and C22 steroids in vivo. ChsE3 could utilize C27 and C24 steroids in vivo. ChsE1-ChsE2 could utilize C27, C24, and C22 steroids in vivo. What is more, the production strain of a C22 steroid, 3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (PDCE), is constructed with ChsE overexpression. This study improved the understanding of the steroid bioconversion pathway and proposed a method of the production of a new C22 steroid. KEY POINTS: • Three ChsE paralogs from M. neoaurum are identified and studied. • The function of ChsE is overlapped in vivo. • A C22 steroid (PDCE) producer was constructed with ChsE overexpression.


Assuntos
Mycobacterium tuberculosis , Fitosteróis , Esteroides/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Acil-CoA Desidrogenase
13.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047121

RESUMO

Mycobacterium neoaurum DSM 1381 originated from Mycobacterium neoaurum ATCC 25790 by mutagenesis screening is a strain of degrading phytosterols and accumulating important C22 steroid intermediates, including 22-hydroxy-23, 24-bisnorchola-4-en-3-one (4-HP) and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (HPD). However, the metabolic mechanism of these C22 products in M. neoaurum DSM 1381 remains unknown. Therefore, the whole-genome sequencing and comparative genomics analysis of M. neoaurum DSM 1381 and its parent strain M. neoaurum ATCC 25790 were performed to figure out the mechanism. As a result, 28 nonsynonymous single nucleotide variants (SNVs), 17 coding region Indels, and eight non-coding region Indels were found between the genomes of the two strains. When the wild-type 3-ketosteroid-9α-hydroxylase subunit A1 (KshA1) and ß-hydroxyacyl-CoA dehydrogenase (Hsd4A) were overexpressed in M. neoaurum DSM 1381, the steroids were transformed into the 4-androstene-3, 17- dione (AD) and 1,4-androstadiene-3,17-dione (ADD) instead of C22 intermediates. This result indicated that 173N of KshA1 and 171K of Hsd4A are indispensable to maintaining their activity, respectively. Amino acid sequence alignment analysis show that both N173D in KshA1 and K171E in Hsd4A are conservative sites. The 3D models of these two enzymes were predicted by SWISS-MODEL and AlphaFold2 to understand the inactivation of the two key enzymes. These results indicate that K171E in Hsd4A may destroy the inaction between the NAD+ with the NH3+ and N173D in KshA1 and may disrupt the binding of the catalytic domain to the substrate. A C22 steroid intermediates-accumulating mechanism in M. neoaurum DSM 1381 is proposed, in which the K171E in Hsd4A leads to the enzyme's inactivation, which intercepts the C19 sub-pathways and accelerates the C22 sub-pathways, and the N173D in KshA1 leads to the enzyme's inactivation, which blocks the degradation of C22 intermediates. In conclusion, this study explained the reasons for the accumulation of C22 intermediates in M. neoaurum DSM 1381 by exploring the inactivation mechanism of the two key enzymes.


Assuntos
Mycobacteriaceae , Mycobacterium , Fitosteróis , Mycobacterium/genética , Mycobacterium/metabolismo , Esteroides/metabolismo , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo , Oxigenases de Função Mista/metabolismo , Fitosteróis/metabolismo
14.
Microb Cell Fact ; 22(1): 53, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36922830

RESUMO

BACKGROUND: 9α-hydroxyandrost-4-ene-3,17-dione (9-OHAD) is a significant intermediate for the synthesis of glucocorticoid drugs. However, in the process of phytosterol biotransformation to manufacture 9-OHAD, product degradation, and by-products restrict 9-OHAD output. In this study, to construct a stable and high-yield 9-OHAD producer, we investigated a combined strategy of blocking Δ1­dehydrogenation and regulating metabolic flux. RESULTS: Five 3-Ketosteroid-Δ1-dehydrogenases (KstD) were identified in Mycobacterium fortuitum ATCC 35855. KstD2 showed the highest catalytic activity on 3-ketosteroids, followed by KstD3, KstD1, KstD4, and KstD5, respectively. In particular, KstD2 had a much higher catalytic activity for C9 hydroxylated steroids than for C9 non-hydroxylated steroids, whereas KstD3 showed the opposite characteristics. The deletion of kstDs indicated that KstD2 and KstD3 were the main causes of 9-OHAD degradation. Compared with the wild type M. fortuitum ATCC 35855, MFΔkstD, the five kstDs deficient strain, realized stable accumulation of 9-OHAD, and its yield increased by 42.57%. The knockout of opccr or the overexpression of hsd4A alone could not reduce the metabolic flux of the C22 pathway, while the overexpression of hsd4A based on the knockout of opccr in MFΔkstD could remarkably reduce the contents of 9,21 ­dihydroxy­20­methyl­pregna­4­en­3­one (9-OHHP) by-products. The inactivation of FadE28-29 leads to a large accumulation of incomplete side-chain degradation products. Therefore, hsd4A and fadE28-29 were co-expressed in MFΔkstDΔopccr successfully eliminating the two by-products. Compared with MFΔkstD, the purity of 9-OHAD improved from 80.24 to 90.14%. Ultimately, 9­OHAD production reached 12.21 g/L (83.74% molar yield) and the productivity of 9-OHAD was 0.0927 g/L/h from 20 g/L phytosterol. CONCLUSIONS: KstD2 and KstD3 are the main dehydrogenases that lead to 9-OHAD degradation. Hsd4A and Opccr are key enzymes regulating the metabolic flux of the C19- and C22-pathways. Overexpression of fadE28-29 can reduce the accumulation of incomplete degradation products of the side chains. According to the above findings, the MF-FA5020 transformant was successfully constructed to rapidly and stably accumulate 9-OHAD from phytosterols. These results contribute to the understanding of the diversity and complexity of steroid catabolism regulation in actinobacteria and provide a theoretical basis for further optimizing industrial microbial catalysts.


Assuntos
Mycobacterium fortuitum , Fitosteróis , Fitosteróis/metabolismo , Mycobacterium fortuitum/metabolismo , Androstenodiona , Oxirredutases/genética , Oxirredutases/metabolismo , Esteroides/metabolismo
15.
Front Microbiol ; 14: 1140515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992935

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen notorious for its remarkable capacity of multi-drug resistance, and has become one of the most important model bacteria in clinical bacteriology research. Quantitative real-time PCR is a reliable method widely used in gene expression analysis, for which the selection of a set of appropriate housekeeping genes is a key prerequisite for the accuracy of the results. However, it is easy to overlook that the expression level of housekeeping gene may vary in different conditions, especially in the condition of molecular microbiology assays, where tested strains are generally cultured under the pre-set antibiotic selection pressures, and how this affects the stability of commonly used housekeeping genes remains unclear. In this study, the expression stability of ten classic housekeeping genes (algD, gyrA, anr, nadB, recA, fabD, proC, ampC, rpoS, and rpsL) under the pressure of eight laboratory commonly used antibiotics (kanamycin, gentamycin, tetracycline, chloramphenicol, hygromycin B, apramycin, tellurite, and zeocin) were tested. Results showed that the stability of housekeeping gene expression was indeed affected by the types of antibiotics added, and of course the best reference gene set varied for different antibiotics. This study provides a comprehensive summary of the effects of laboratory antibiotics on the stability of housekeeping genes in P. aeruginosa, highlighting the necessity to select housekeeping genes according to the type of antibiotics used in the initial stage of experiment.

16.
Microb Cell Fact ; 22(1): 56, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964553

RESUMO

BACKGROUND: L­Fucose is a rare sugar that has beneficial biological activities, and its industrial production is mainly achieved with brown algae through acidic/enzymatic fucoidan hydrolysis and a cumbersome purification process. Fucoidan is synthesized through the condensation of a key substance, guanosine 5'­diphosphate (GDP)­L­fucose. Therefore, a more direct approach for biomanufacturing L­fucose could be the enzymatic degradation of GDP­L­fucose. However, no native enzyme is known to efficiently catalyze this reaction. Therefore, it would be a feasible solution to engineering an enzyme with similar function to hydrolyze GDP­L­fucose. RESULTS: Herein, we constructed a de novo L­fucose synthetic route in Bacillus subtilis by introducing heterologous GDP­L­fucose synthesis pathway and engineering GDP­mannose mannosyl hydrolase (WcaH). WcaH displays a high binding affinity but low catalytic activity for GDP­L­fucose, therefore, a substrate simulation­based structural analysis of the catalytic center was employed for the rational design and mutagenesis of selected positions on WcaH to enhance its GDP­L­fucose­splitting efficiency. Enzyme mutants were evaluated in vivo by inserting them into an artificial metabolic pathway that enabled B. subtilis to yield L­fucose. WcaHR36Y/N38R was found to produce 1.6 g/L L­fucose during shake­flask growth, which was 67.3% higher than that achieved by wild­type WcaH. The accumulated L­fucose concentration in a 5 L bioreactor reached 6.4 g/L. CONCLUSIONS: In this study, we established a novel microbial engineering platform for the fermentation production of L­fucose. Additionally, we found an efficient GDP­mannose mannosyl hydrolase mutant for L­fucose biosynthesis that directly hydrolyzes GDP­L­fucose. The engineered strain system established in this study is expected to provide new solutions for L­fucose or its high value­added derivatives production.


Assuntos
Hidrolases , Manose , Hidrolases/metabolismo , Manose/metabolismo , Fucose/metabolismo , Bacillus subtilis/genética , Reatores Biológicos , Fermentação , Engenharia Metabólica
17.
Appl Microbiol Biotechnol ; 107(5-6): 1563-1574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36729227

RESUMO

C22 steroid drug intermediates are suitable for corticosteroids synthesis, and the production of C22 steroids is unsatisfactory due to the intricate steroid metabolism. Among the C22 steroids, 21-hydroxy-20-methyl-pregna-1,4-dien-3-one (1,4-HP) could be used for Δ1-steroid drug synthesis, such as prednisolone. Nevertheless, the production of 1,4-HP remains unsatisfactory. In this study, an ideal 1,4-HP producing strain was constructed. By the knockout of 3-ketosteroid-9-hydroxylase (KshA) genes and 17ß-hydroxysteroid dehydrogenase (Hsd4A) gene, the steroid nucleus degradation and the accumulation of C19 steroids in Mycolicibacterium neoaurum were blocked. The mutant strain could transform phytosterols into 1,4-HP as the main product and 21-hydroxy-20-methyl-pregna-4-ene-3-one as a by-product. Subsequently, the purity of 1,4-HP improved to 95.2% by the enhancement of 3-ketosteroid-Δ1-dehydrogenase (KSTD) activity, and the production of 1,4-HP was improved by overexpressing NADH oxidase (NOX) and catalase (KATE) genes. Consequently, the yield of 1,4-HP achieved 10.5 g/L. The molar yield and the purity of 1,4-HP were optimal so far, and the production of 1,4-HP provides a new intermediate for the pharmaceutical steroid industry. KEY POINTS: • A third 3-ketosteroid-9-hydroxylase was identified in Mycolicibacterium neoaurum. • An 1,4-HP producer was constructed by KshA and Hsd4A deficiency. • The production of 1,4-HP was improved by KSTD, NOX, and KATE overexpression.


Assuntos
Mycobacterium , Fitosteróis , Mycobacterium/genética , Oxigenases de Função Mista/metabolismo , Esteroides/metabolismo , Cetosteroides/metabolismo
18.
Microorganisms ; 10(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36296205

RESUMO

L-serine is widely used in the food, cosmetic, and pharmaceutical industries. However, the complicated metabolic network and regulatory mechanism of L-serine production lead to the suboptimal productivity of the direct fermentation of L-serine and limits its large-scale industrial production. In this study, a high-yield L-serine production Escherichia coli strain was constructed by a series of defined genetic modification methodologies. First, L-serine-mediated feedback inhibition was removed and L-serine biosynthetic pathway genes (serAfr, serC, and serB) associated with phosphoglycerate kinase (pgk) were overexpressed. Second, the L-serine conversion pathway was further examined by introducing a glyA mutation (K229G) and deleting other degrading enzymes based on the deletion of initial sdaA. Finally, the L-serine transport system was rationally engineered to reduce uptake and accelerate L-serine export. The optimally engineered strain produced 35 g/L L-serine with a productivity of 0.98 g/L/h and a yield of 0.42 g/g glucose in a 5-L fermenter, the highest productivity and yield of L-serine from glucose reported to date. Furthermore, transcriptome and intermediate metabolite of the high-yield L-serine production Escherichia coli strain were analyzed. The results demonstrated the regulatory mechanism of L-serine production is delicate, and that combined metabolic and bioprocess engineering strategies for L-serine producing strains can improve the productivity and yield.

19.
Appl Environ Microbiol ; 88(22): e0130322, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286498

RESUMO

Steroid drug precursors, including C19 and C22 steroids, are crucial to steroid drug synthesis and development. However, C22 steroids are less developed due to the intricacy of the steroid metabolic pathway. In this study, a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), was successfully obtained from Mycolicibacterium neoaurum by 3-ketosteroid-Δ1-dehydrogenase and enoyl-CoA hydratase ChsH deficiency. The production of 9-OH-PDCE was improved by the overexpression of 17ß-hydroxysteroid dehydrogenase Hsd4A and acyl-CoA dehydrogenase ChsE1-ChsE2 to reduce the accumulation of by-products. The purity of 9-OH-PDCE in fermentation broth was improved from 71.7% to 89.7%. Hence, the molar yield of 9-OH-PDCE was improved from 66.7% to 86.7%, with a yield of 0.78 g/L. Furthermore, enoyl-CoA hydratase ChsH1-ChsH2 was identified to form an indispensable complex in Mycolicibacterium neoaurum DSM 44704. IMPORTANCE C22 steroids are valuable precursors for steroid drug synthesis, but the development of C22 steroids remains unsatisfactory. This study presented a strategy for the one-step bioconversion of phytosterols to a C22 steroid drug precursor, 9-hydroxy-3-oxo-4,17-pregadiene-20-carboxylic acid methyl ester (9-OH-PDCE), by 3-ketosteroid-Δ1-dehydrogenase and enoyl-CoA hydratase deficiency with overexpression of 17ß-hydroxysteroid dehydrogenase acyl-CoA dehydrogenase in Mycolicibacterium. The function of the enoyl-CoA hydratase ChsH in vivo was revealed. Construction of the novel C22 steroid drug precursor producer provided more potential for steroid drug synthesis, and the characterization of the function of ChsH and the transformation of steroids further revealed the steroid metabolic pathway.


Assuntos
Acil-CoA Desidrogenases , Fitosteróis , Pró-Fármacos , Fitosteróis/metabolismo , Oxirredutases/metabolismo , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Esteroides/metabolismo , Acil Coenzima A , Ácidos Carboxílicos , Cetosteroides , Ésteres
20.
Bioresour Technol ; 361: 127684, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35882315

RESUMO

Multisubstrate synergetic anaerobic co-digestion can effectively overcome low efficiency of food waste (FW) mono-digestion. This study investigated the effect of supplementing FW with kitchen waste (KW) or garden waste (GW) on thermophilic dry anaerobic co-digestion. FW-KW and FW-GW co-digestion enhanced biogas production by 24.69 % and 44.96 % at organic loading rate (OLR) of 3 g VS L-1 d-1, and increased OLR tolerance from 3 to 4 g VS L-1 d-1 through mitigating ammonia nitrogen inhibition and volatile fatty acids accumulation. Co-digestion enriched the dominant hydrolytic bacteria Defluviitoga, resulting in an acceleration of substrate hydrolysis. FW-KW co-digestion improved biogas production by increasing gene abundance related to key enzymes in methanogenesis pathways and promoting the conversion of intermediate products into methane. FW-GW co-digestion enhanced biogas production by enriching ABC transporters-associated genes, leading to efficient substrate utilization. This study provides a promising approach for FW treatment with multivariate insights into thermophilic dry anaerobic co-digestion.


Assuntos
Microbiota , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos/microbiologia , Alimentos , Jardins , Metano/metabolismo , Eliminação de Resíduos/métodos , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...